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Tübingen, Germany
‡ Institut für Physik, Technische Universität Chemnitz, D–09107 Chemnitz, Germany

Received 13 June 1997, in final form 28 July 1997

Abstract. Some years ago, Luck proposed a relevance criterion for the effect of aperiodic
disorder on the critical behaviour of ferromagnetic Ising systems. In this article, we show how
Luck’s criterion can be derived within an exact renormalization scheme for Ising quantum chains
with coupling constants modulated according to substitution rules. Luck’s conjectures for this
case are confirmed and refined. Among other outcomes, we give an exact formula for the
correlation length critical exponent for arbitrary two-letter substitution sequences with marginal
fluctuations of the coupling constants.

1. Introduction

The influence of aperiodic (dis-)order on the thermodynamic properties and the critical
behaviour of spin systems has been an active research area, particularly since the discovery
of quasicrystals in 1984. In view of the many articles existing, we cannot give proper credit
to all contributors; instead, we would like to refer the reader to a recent review [13] which
contains a rather complete bibliography on this subject. For ferromagnetic Ising systems,
heuristic scaling arguments, put forward by Luck [18], lead to qualitative predictions on the
relevance of disorder implemented through an aperiodic variation of the coupling constants
which go beyond the original relevance–irrelevance criterion of Harris [14]. For the Ising
quantum chain (IQC), or the equivalent two-dimensional classical Ising model [17] with
layered disorder, this relevance criterion reads as follows. The critical behaviour is of
Onsager type as long as the fluctuations in the sequence of coupling constants are bounded,
whereas for unbounded fluctuations the critical singularities resemble those of the randomly
disordered case. This behaviour had first been conjectured by Tracy [24] on the basis of
his results for two different examples of three-letter substitution rules. Of particular interest
is the marginal case with logarithmically (in the system size) diverging fluctuations. Here,
the critical exponents are predicted to depend continuously on the coupling constants [18].

Meanwhile, some exact results were obtained for substitution chains with marginal
fluctuations of the couplings. For a number of substitution chains, the surface magnetization
critical exponent could be calculated [26, 6, 7, 5]; and recently, the correlation length critical
exponent was derived for two special substitution rules using an exact renormalization
approach [15]. All these results are in accordance with Luck’s predictions.

The real-space renormalization method we use in this article is based on the decimation
process introduced in [15]. Our set-up is quite different though; in particular we will show
how arbitrary substitution rules can be analysed in terms ofS-matrices and their star-
product formalism. In this way, the dependence of the critical behaviour on the nature of
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the fluctuations can be derived explicitly. The analysis is carried out in detail for two-
letter substitution chains, with the result that Luck’s relevance criterion emerges from the
renormalization relations in a natural way. An extended renormalization scheme for the
most general case ofn-letter substitution rules is presented in an appendix and discussed
for certain examples. For infinite classes of substitution chains with marginal fluctuations,
including the two-letter chains, an analytic expression for the correlation-length critical
exponent is given.

This article is organised as follows. In section 2, we give a brief outline of the
model, including some introductory remarks on substitution rules and on properties of the
corresponding substitution sequences. Then, in section 3, we introduce the renormalization
transformation for a restricted class ofn-letter substitution chains, comprising all two-letter
substitution chains. The dependence of the renormalization flow on the fluctuations of
the couplings is shown and the consequences are discussed in detail. Subsequently, in
section 4, we summarize the implications of our results for the critical properties of the IQC
for the three different types of fluctuations in the sequence of the coupling constants. Our
conclusions and an outlook on future developments are presented in section 5. The paper
contains two appendices related to the content of section 3: in appendix A, the solution
of the eigenvalue problem for the case of a two-letter substitution sequence is derived;
and finally, generalizing the discussion of section 3, the renormalization transformation for
arbitraryn-letter substitution rules is explained in appendix B.

2. Ising quantum chain and substitution sequences

The IQC in a transverse magnetic field is defined by the Hamiltonian

HN = − 1
2

( N∑
j=1

εjσ
x
j σ

x
j+1+

N∑
j=1

hjσ
z
j

)
(2.1)

acting on the tensor-product space
⊗N

j=1C2 ∼= C2N . Here, thehj denote the transverse
fields at the sites. Theεj are site-dependent coupling constants, and the operatorsσ

x,z
j

denote Pauli’s matrices acting on thej th site. In what follows, we consider closed chains
with periodic boundary conditions which are defined byσxN+1 = σx1 ; various other kinds of
boundary conditions can be chosen without changing the key results.

For a general set of coupling constantsεj and fieldshj , the IQC can be written as a
free-fermion model via a Jordan–Wigner transformation and can then be diagonalized by a
Bogoljubov–Valatin transformation, resulting in [16]

HN =
N∑
q=1

3q(η
†
qηq − 1

2)+ C (2.2)

whereη†q , ηq areN fermionic creation and annihilation operators andC is some constant.
The dimensionless excitation energies3q (which can be chosen to be positive and ordered,
i.e. 3N > · · · > 32 > 31 > 0, while properly adjusting the constantC) satisfy the linear
difference equations

3q9q(j) = −hj8q(j)− εj8q(j + 1)

3q8q(j) = −εj−19q(j − 1)− hj9q(j).
(2.3)

Normally, one proceeds by eliminating either9 or 8. In this way, the problem of
diagonalizing the 2N × 2N matrix HN can be reduced to the diagonalization of anN × N
matrix. From the set ofN eigenvalues (fermion frequencies)3q of the latter, the total
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spectrum of the complete HamiltonianHN is recovered by considering the sums of the
elements of any of its 2N subsets. For periodic boundary conditions, the situation is in fact
a little more complicated; in order to avoid the appearance of a non-local number operator
in the fermionic Hamiltonian one has to consider so-calledmixed sectorHamiltonians.
These are obtained by combining theeven sector (with respect to the operator

∏N
j=1 σ

z
j

that commutes withHN ) of the Hamiltonian (2.1) withperiodic boundary conditions and
the odd sector of the same Hamiltonian withantiperiodic boundary conditions (defined by
σxN+1 = −σx1 ), and vice versa [2, 11].

The IQC is equivalent to the two-dimensional classical Ising model with a layered
modulation of the interactions [17]. The correspondence shows up through an extremely
anisotropic limit (also called theτ -continuum limit [10]) of the coupling constants of the
latter, which is believed not to alter the critical behaviour. Explicitly, one establishes the
following relations: ThetemperatureT of the classical model corresponds to thetransverse
field h of the quantum chain, thefree energytranslates into theground-state energyand
the counterpart of thecorrelation lengthξ‖ parallel to the layers is theinverse mass gap
(E1 − E0)

−1 of the IQC. In our setting, the mass gap is just given by the modulus of the
smallest fermionic excitation31 of (2.2). According to finite-size scaling, we thus expect
a scaling behaviour of31 at the critical point as

31(N) = mν‖/ν⊥31(mN) =: mz31(mN) (2.4)

provided the correlation-length scales with a power law at all. Hereby, the scaling exponent
z translates into the correlation-length critical exponentν‖ parallel to the layers in the
terminology of the two-dimensional statistical system, whileν⊥ retains its unperturbed
Onsager valueν⊥ = 1.

The Hamiltonian (2.1) iscritical (in the sense that the energy gap in the excitation
spectrum vanishes, i.e.31 = 0) in the thermodynamic limit if thegeometric mean(rather
than the arithmetic mean) of the couplings, normalized by the variables of the transverse
field, is equal to one, i.e.

lim
N→∞

∣∣∣∣ ε1

h1
· · · εN

hN

∣∣∣∣1/N = 1 (2.5)

compare with [20]. The repetitive structure of the substitution sequences we are going to
consider guarantees that the mean is well defined [21, 19]. Let us now assume that the
coupling constantsεj (j = 1, 2, . . . , N) are chosen from a set ofn possible valuesεm
(m = 1, 2, . . . , n), the valueεm occurring with a frequencypm (where

∑n
m=1pm = 1). For

simplicity, we take the field to be constant, i.e.hj ≡ h = 1. Then, condition (2.5) can be
fulfilled by choosingn positive real numbersr1, r2, . . . , rn with r1 · r2 · . . . · rn = 1, and
setting the couplings to

εm = rp/pmm (2.6)

wherep = p1p2 . . . pn. Unless stated otherwise, this parametrization of the critical surface
will be used in the sequel.

Substitution sequences.Let us now consider coupling constantsεj drawn from a set of
valuesεα, where the labelα ∈ A runs over the letters of a (finite)n-letter alphabetA.
We choose the couplingsεj according to sequences generated by iterated application of
a substitution rule% : α → wα on A. As an introduction to the concept and for some
notation, consider a simple example on a two-letter alphabetA = {a, b}:

%(k) :
a→ ab

b→ ak
M%(k) =

(
1 k

1 0

)
λ
(k)
± =

1±√4k + 1

2
. (2.7)
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We start with an initial word, e.g.W0 = a, and defineWm+1 = %(k)(Wm). M%(k) denotes the
corresponding substitution matrix (whose elements count the number of lettersa andb in
the wordswa and wb), which has the eigenvaluesλ(k)± . The entries of the, statistically
normalized, (right) eigenvectorvPF, corresponding to the Perron–Frobenius eigenvalue
λPF = λ

(k)
+ , give the frequencies of the letters in the limit wordW∞. In order to ensure

that, starting from any seed, the letter frequencies converge to unique, positive values in the
limit chain, we restrict ourselves toprimitive substitution rules% throughout this paper. For
the corresponding substitution matricesM%, this means that the entries ofM`

% are strictly
positive for any integer̀ > `0 (and a suitably chosen finitè0 > 0). This is obviously true
for the examples (2.7).

Associated with a wordWm of length (i.e. number of letters)N = |Wm|, one obtains
finite (closed) quantum chains withN sites by settingεj = εa whenever thej th letter
of the wordWm is an a, and εj = εb otherwise, the final letter ofWm determining the
coupling between the last and the first spin in the chain. WhileλPF, the largest eigenvalue
of the substitution matrix, describes the asymptotic scaling of the chain length with the
number of iterationsm, N ∼ (λPF)

m, the fluctuation behaviour of the exchange couplings
is connected to the second-largest eigenvalueλ2 (where it is themodulusof the eigenvalue
that matters, hence by ‘second-largest eigenvalue’ we always refer to the eigenvalue with
the second-largest absolute value). In order to quantify the fluctuations, let us define

gW =
∑
α∈W

(εα − ε̄) (2.8)

where ε̄ is the average coupling in the limit chain. Fluctuations stayboundedas long as
|λ2| < 1, but for |λ2| > 1 they grow with iterated substitutions as a power of the chain
length,gW ∼ Nβ , governed by the so-calledwandering exponentβ that is given by

β = log |λ2|
logλPF

. (2.9)

In the limiting case|λ2| = 1, |gW | stays constant when we prolong the chain by complete
iteration steps. Generically, however, finite fluctuations within the substituteswα of the
lettersα will increase the total fluctuation in the vicinity of these points by a certain amount
δ: gW̃ > gW + δ for some wordW̃ with ||W̃|− |%(W)|| 6 1 and fixed1. By repeated use
of this argument, we thus expect fluctuations thatdiverge logarithmicallywith the length
of the chain (since the length grows exponentially with the number of iterations), see also
[9]. On the other hand, the same argument also shows that, in this case, the fluctuation
behaviour is not completely determined by thesubstitution matrix, but may also depend on
the details of the actualsubstitution rule[12]; and for special choices the fluctuations may
still stay bounded even though the second-largest eigenvalue is|λ2| = 1.

Coming back to our examples (2.7), let us concentrate on the three casesk = 1 (which
yields the famousFibonacci sequence), k = 2 (the period-doubling sequence), andk = 3
(the binary non-Pisot sequence). As the second-largest eigenvalues of the substitution
matricesM%(k) fulfill |λ(1)− | < 1, |λ(2)− | = 1, and |λ(3)− | > 1, this includes an example of
bounded fluctuations (k = 1), a marginal case with logarithmically divergent fluctuations
(k = 2) and an example of strong fluctuations (k = 3), hence all three interesting cases are
illustrated [12]. Another substitution chain that is referred to several times in the text is the
well known Thue–Morse sequence

%(TM) :
a→ ab

b→ ba
M%(TM) =

(
1 1
1 1

)
λ
(TM)
+ = 2 λ

(TM)
− = 0. (2.10)
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3. Renormalization transformation

Rather than reducing the set of linear equations (2.3) toN dimensions, we proceed (as does
[15]) with a direct treatment of a 2N -dimensional eigenvalue problem of the real symmetric
matrix

H =



0 h1 0 0 0 · · · 0 εN
h1 0 ε1 0 0 · · · 0 0
0 ε1 0 h2 0 · · · 0 0
0 0 h2 0 ε2 · · · 0 0
...

...
. . .

. . .
. . .

. . .
...

0 0 · · · 0 hN−1 0 εN−1 0
0 0 · · · 0 0 εN−1 0 hN
εN 0 · · · 0 0 0 hN 0


. (3.1)

SinceH is symmetric and bipartite†, the eigenvalues occur in real pairs of opposite sign. But
changing the sign of an eigenvalue simply means interchanging the corresponding creation
and annihilation operators in equation (2.2), thus we can restrict ourselves to the positive
part of the spectrum. In what follows, we concentrate on the case of a constant fieldhj ≡ h,
where we may set|h| = 1 by an appropriate choice of the energy scale. Of course, one
cannot possibly expect analytical results for an arbitrary sequence of couplings. However,
for substitutionsequences, more can be said using an exact renormalization scheme, and,
for an interesting class of chains with marginal fluctuations, the scaling exponentz (2.4)
can be determined exactly and given in a closed form.

Consider now sequences of couplings chosen according to a substitution rule

% : ai → aiwi (3.2)

on ann-letter alphabetA = {a1, . . . , an}. Here, thewi aren arbitrary words of finite length
in the alphabetA. Indeed, for the case ofaperiodic two-lettersubstitution chains, this
form imposes no restriction at all, since these can all be generated by substitution rules of
the form (3.2). To see this, note that any two-letter substitution rule%̄ can be transformed
appropriately by inner automorphisms, i.e. by replacing%̄  % : ai → ŵ−1%̄(ai)ŵ (where
a natural choice of the word̂w is the common beginning, if any, of the words%̄(a1) and
%̄(a2)), and/or by considerinḡ%2 instead. Obviously, this does not alter the limit chain.
Note that this is not possible for certainperiodic chains, namely those which are generated
by a substitution rule that replaces all letters by the same word (the period), or by a multiple
of it. It is no problem, however, to treat this case separately.

The eigenvalue problem for the matrixH (3.1) can be reformulated using transfer
matrices in the usual way. Our renormalization transformation (RT) is, however, most
conveniently described in terms of the star-product formalism, borrowed from scattering
theory [22]. We therefore introduce newS-transfer matrices, calledS-matrices from now
on, by (

ψ2j

ψ2k+1

)
= Sj |k

(
ψ2j+1

ψ2k

)
(3.3)

with

Sj |k = Sj |j+1 ∗ Sj+1|j+2 ∗ · · · ∗ Sk−1|k =
k−1∗̀=j S`|`+1 (3.4)

† It can be represented in the block-formH =
(

0 A

A 0

)
after an appropriate reordering of the basis.
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where the star-product (∗) of two 2× 2 matrices is defined as(
e ē

r ρ

)
∗
(
ρ1 r1
ō o

)
=
(
e 0
0 o

)
+ 1

1− ρρ1

(
ērρ1 ēr1
ōr ōr1ρ

)
. (3.5)

In our case, according to equation (3.1), the elementaryS-matrices are

Sj |j+1 =
(
ε−1
j 3 −ε−1

j h

−ε−1
j+1h ε−1

j+13

)
(3.6)

where3 denotes an eigenvalue† of H.
In order to establish the renormalization scheme, we introduce a number of additional

parameters for theseS-matrices. For each letterai ∈ A, we define two asymmetry
coefficientsκ±ai and a field variablehai that enter then2 different elementaryS-matrices
through‡

Sai |aj =
(
ε−1
ai
κ+ai 3 −ε−1

ai
hai

−ε−1
aj
hai ε−1

aj
κ−ai 3

)
. (3.7)

The RT now justreversesthe substitution steps. In our framework, this is simply done by
building∗-products of theS-transfer matrices that correspond to the wordswi given by the
substitution rule (3.2). Schematically, this works in the following fashion

wherewki denotes thekth letter of the wordwi . In this way, we obtain renormalized
S-matrices

S̃ai |aj = Sai |w1
i
∗ Sw1

i |w2
i
∗ · · · ∗ S

w
|wi |
i |aj =:

(
ε−1
ai
κ̃+ai 3̃ −ε−1

ai
h̃ai

−ε−1
aj
h̃ai ε−1

aj
κ̃−ai 3̃

)
(3.8)

compare with equation (3.6). As anadditional conditionon the RT, and in accordance with
their initial values, we keep the product of the 2n asymmetry-coefficientsκ±ai fixed:

n∏
i=1

κ̃+ai κ̃
−
ai
=

n∏
i=1

κ+ai κ
−
ai
= 1. (3.9)

Now, the RT for the different parameters can be read off directly from the∗-product
relations. Explicitly, we obtain the following recursion relations

h(1)ai = hai h(k+1)
ai
= −εwki hwki h(k)ai
ε2
wki
−3wki +3

(k)
ai−

h̃ai = h(|wi |+1)
ai

(3.10)

3
(1)
ai− = 3ai− 3

(k+1)
ai− = 3wki − +

h2
wki
3
(k)
ai−

ε2
wki
−3wki +3

(k)
ai−

3̃ai− = 3(|wi |+1)
ai− (3.11)

† So far, we do not have to impose any restriction here, thus3 may beany eigenvalue ofH. Only later, after
expanding the renormalization equations in powers of3 (equation (3.15) and below), we shall restrict ourselves
to eigenvalues that vanish in the limit of an infinite system size.
‡ Note that this labelling of the fields differs from that used in equations (2.1) and (3.1) in that the field variables
are now labelled in the same way as the coupling constants (i.e. as the bonds) rather than by the sites of the chain.
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3
(1)
ai+ = 3ai+ 3

(k+1)
ai+ = 3(k)

ai+ +
3wki +[h(k)ai ]2

ε2
wki
−3wki +3

(k)
ai−

3̃ai+ = 3(|wi |+1)
ai+ (3.12)

for the field variableshai and for3ai± that are defined as

3ai± := κ±ai 3 3̃ai± := κ̃±ai 3̃. (3.13)

Using equation (3.9), we obtain the renormalized fermion frequencies3̃ as

3̃ =
( n∏
i=1

3̃ai+3̃ai−

)1/2n

. (3.14)

Note the following properties of our renormalization approach:
• The RT isexact, since no new parameters are introduced in a renormalization step.

Altogether, there are 3n parameters forn different couplings: effectively 2n−1 asymmetry-
parametersκ±ai , then fieldshai , and the eigenvalue3. Note thatthe coupling constants are
not renormalizedin our scheme.
• The rescaling factor of the system size is just given by the leading eigenvalueλPF of

the substitution matrix corresponding to the substitution rule under consideration.
• The critical point of the model, defined by the vanishing of the mass gap (3 ≡ 0),

corresponds to a fixed point of the RT for3, as can easily be seen from equations (3.11)
and (3.12).
• The scaling behaviour in the vicinity of the critical point is governed by the leading-

order term of the RT as3→ 0.
We now proceed to establish the RT of the spectrum to leading order for3 → 0

explicitly. This is most easily done by noting that, in the product (3.8), the common
prefactors(1 − ρρ1)

−1 = 1 + O(32) of the ∗-products (3.5) gives rise to higher-order
corrections only; and therefore, for the present purpose, the denominator can be neglected
completely. Consider first the renormalization of the field variables. We obtain

h̃ai = hai
|wi |∏
`=1

−hw`i
εw`i

+O(32). (3.15)

Instead of working directly with the RT for the fields, it is advantageous to consider new
variables

yi := log

(
h2
ai

ε2
ai

)
. (3.16)

To linear order in3, the RT ofyi then yields the simple matrix form

ỹ = Mt
%y (3.17)

where Mt
% is just thetransposeof the substitution matrix of%. Now, take a look at the

initial conditionsy[0] for y which arey [0]
i = −2 logεai . As stated above, the entries of

the (statistically normalized) Perron-Frobenius eigenvectorvPF are the asymptotic letter
frequenciespi := pai . We thus obtain

y0 · vPF= −2 log

[ n∏
i=1

εpiai

]
= 0 (3.18)

for an arbitrary set of couplings fulfilling the criticality condition (2.5). Hence,y[0] is
nothing but an arbitrary (real) linear combination of the (right) eigenvectors ofMt

% (hence
of the left eigenvectors ofM%) excluding the Perron–Frobenius one. Thus, for a generic
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choice of critical couplings, it scales with the second-largest eigenvalue,‖y[k]‖ ∼ |λ2|k,
under the iterationy[k+1] = Mt

%y
[k] . Translated into the terminology of the renormalization

group, we recognisey as ascaling field transforming according to

ỹ = (λPF)
βy (3.19)

where the correspondingrenormalization group eigenvalueis just the wandering exponent
β defined in equation (2.9). This demonstrates explicitly that power-law, logarithmic, or
bounded fluctuations lead to relevant, marginal, or irrelevant scaling fields, respectively.
We are going to describe below how this affects the critical behaviour.

We now proceed to the RT for3ai±. Defining

P+aiaj :=
|wi |∑
k=1

δwki ,aj

h2
ai

h2
wki

k∏
`=1

h2
w`i

ε2
w`i

+ δai ,aj (3.20)

P−aiaj :=
[ |wi |∑
k=1

δwki ,aj

k∏
`=1

ε2
w`i

h2
w`i

+ δai ,aj
] |wi |∏
`=1

h2
w`i

ε2
w`i

(3.21)

we find, by induction, as the linear part of the RT of3ai±

3̃ai± =
n∑
j=1

3aj±P
±
aiaj
. (3.22)

SettingM±ij := P±aiaj , this can also be written in a matrix form

Λ̃± = M±Λ±. (3.23)

Since all the components of the matricesM± and of the vectorsΛ± are positive, the vectors
converge to the Perron–Frobenius eigenvectors ofM± under iteration of the RT. Letµ±

denote the Perron–Frobenius eigenvalues ofM±. From equation (3.14), we conclude that

3̃2 = µ+µ−32. (3.24)

For further convenience, we transformM+ (under conservation of the spectrum) according
to M+T = T−1M+T with a diagonal transformation matrixTij = h2

ai
δij . As new entries, we

find, dropping the indexT ,

M+ij = P+aiaj =
|wi |∑
k=1

δwki ,aj

k∏
`=1

h2
w`i

ε2
w`i

+ δai ,aj . (3.25)

This form shows explicitly that, to linear order in3, only the reduced couplingsεai /hai
enter in the RT. Finally, since the rescaling factor of the chain length is the largest eigenvalue
λPF of the substitution matrix, we formally obtain the scaling exponentz through

3j = xjN−z z = log(µ+µ−)
2 log(λPF)

. (3.26)

Let us now look at the different cases of fluctuation behaviour in more detail.

3.1. Bounded Fluctuations

Becausey is perpendicular to the Perron–Frobenius eigenvector of the substitution matrix,
and since all other eigenvalues are smaller than one in modulus, we find‖y[k]‖ → 0
for all substitution chains with bounded fluctuations, henceh2

ai
/ε2
ai
→ 1. Evaluating the
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transformation matricesM± at this fixed point of the fields, we obtain from equations (3.21)
and (3.25)

M+ = M− = M% (3.27)

and hence

µ+ = µ− = λPF. (3.28)

Thus we havez = 1 for substitution chains with bounded fluctuations, and the low-energy
spectrum at criticality scales as

3j = xj v
N
. (3.29)

Hereby, the3-transformation induces a finite renormalization of thefermion velocityv in
comparison to the uniform chain

v = lim
k→∞
3→0

(λPF)
k

3[k]/3
(3.30)

where3[k] is the image of3[0] = 3 after ak-fold application of the RT.
In general, all renormalization steps contribute in equation (3.30). However, ifall

eigenvalues of the substitution matrix but the Perron–Frobenius one are zero, the fixed
point of the RT is already reached after the first renormalization step andv is obtained
immediately. This is shown below for periodic chains, but also allows us to calculate
the fermion velocity of the Thue–Morse and related chains. Using the equidistribution
property of quasiperiodiccut-and-projectchains, like our first example (2.7) withk = 1
(the Fibonacci sequence), the limit in equation (3.30) can be carried through explicitly for
these cases, too. Since this has already been done in [18], we do not repeat the arguments
here, and merely cite the result

v(r) = 2 log(r)

r − r−1
(3.31)

for two couplings parametrized as in equation (2.6).

Periodic chains. In this short section, we briefly show how the known results for the
fermion velocity v for periodic quantum chains can be recovered easily within our
renormalization scheme. By a substitution rule of the form

% : ai → w (3.32)

any periodic chain with periodm = |w| can be generated. In this simple situation,
we can take all the fieldshai ≡ h and asymmetry-parametersκ+ai ≡ κ ≡ (κ−ai )

−1 to
be equal. By virtue of the criticality condition (2.5), the reduced couplings transform
as h2/ε2

i → 1 (see equation (3.15)), and we obtain the (fermionic) Hamiltonian of a
uniform chain (ε = h = εw1) after a single renormalization step. Note that the additional
asymmetry parameters result in an irrelevant similarity transformation of matrix (3.1) only.
The renormalization factor for3 can be deduced from equations (3.21) and (3.25), explicitly
it reads (using equation (2.5), and normalizing toε = h = 1):

m2v−2 := 3̃2

ε2
13

2
=
(

1+
|w|∑
k=2

ε2
2 · · · ε2

k

)(
1+

|w|∑
k=2

ε−2
2 · · · ε−2

k

)

=
|w|∑
k=1

|w|∑
l=1

ε2
k · · · ε2

k+l−1(mod|w|) (3.33)
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with ε` := εw` . The critical scaling of the fermion frequencies now results in

3j = 2πj

N
v j � N (3.34)

wherev is given in equation (3.33), and where the well-known scaling behaviour of the
uniform chain is recovered forv = 1. This result was first derived in the context of the 2D
classical Ising model with layered periodicity in [1].

In general, there is no closed expression for the fermion velocityv. For the special case
of a uniform chain ofεa-couplings with periodicεb-defects on everymth site, we derive

v(r) = sinh[log(r)/m]

sinh[log(r)]/m
. (3.35)

Note thatv(r) = 1 for m = 1 (simple periodic chain), but alsov(r)→ 1 for m→∞ since
the parametrization (2.6) implies thatr → 1 in this limit.

3.2. Marginal fluctuations

We now consider the case where the second-largest eigenvalue(s) of the substitution matrix
(and of its transpose) have|λ| = 1. LetE1 denote the correspondingm-dimensional (joined)
eigenspace ofMt

%, where 16 m 6 n− 1. By equations (3.17) and (3.18),y[k] converges to
the projection ofy[0] on E1 under iteration of the RT. The critical surface being(m − 1)-
dimensional, we can parametrizey = y[∞] in the renormalization limit as

y =
m∑
i=1

log(ri)v
i (3.36)

with m vectorsvi that spanE1 and coefficientsri > 0, i = 1, 2, . . . , m. This implies

h2
aj

ε2
aj

= exp(yj ) =
m∏
i=1

r
vij
i (3.37)

and, if the vector componentsvij are chosen as integers, the entries of the matricesM± are

polynomials with positive coefficients ofm parametersr±1
1 , . . . , r±1

m . If all ri are equal to
1, we obviously obtain

M+(ri = 1) = M−(ri = 1) = M%. (3.38)

Furthermore, ify[k] converges to an eigenvector ofMt
% to the eigenvalueλ2 = 1, M+ and

M− are related by

M+ij (r1, . . . , rm) = M−ij (r−1
1 , . . . , r−1

m ). (3.39)

To obtain the scaling exponentz from equation (3.26), we need to know the Perron–
Frobenius eigenvaluesµ± of M±. There is no explicit solution to that problem in the
general case. In what follows, we present the complete answers for a number of more
special, yet infinite, classes of substitution rules.

Cyclic permutations. Let w be any word from the alphabet, andpk(w) its kth cyclic
permutation. Consider now a substitution rule% of the form (3.2) with

wi = [pki (w)]
li . (3.40)

One special case is to take equal wordswi = w for all i = 1, 2, . . . , n. The corresponding
substitution matrices indeed haveλ2 = 1 as their second-largest eigenvalue, with degeneracy
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(n − 1), since the column vectors ofM% − I differ by scalar factors only. Thus the fields
stay at their original values and are not renormalized at all. To deriveµ± as a function
of the parametersr1, . . . , rn−1, we simply note that the special form of% transforms this
property toM±, not just for the pointri = 1, ∀i, but independentlyof the parameters. We
thus obtain

µ± = tr(M±)− n+ 1> 1 (3.41)

and the scaling exponent is given by

z = log(1− n+∑n
i=1P

+
aiai
)+ log(1− n+∑n

i=1P
−
aiai
)

2 log(λPF)
(3.42)

where theP±ai ,aj are given in equations (3.21) and (3.25) as functions of the couplings.

Since µ± are polynomials of the parametersr±1
i with only positive coefficients, and

µ+({ri}) = µ−({r−1
i }), we concludez > 1. As a function of the parameters,z is either

purely convex, with unique minimumz(ri = 1) = 1 (the limit of the uniform chain), or
it is constant: z ≡ 1. It is interesting to take a closer look at the latter case. Obviously,
this means thatP±aiai = [M%]ii , independently of the parameters. As can be shown, for
substitution rules of the form (3.2) with (3.40), this is possible if and only ifw is a word
(or a power of a word) with all lettersai appearing precisely once and if the last letter of
wi is ai . This means, however, that the resulting chain isperiodic and has bounded rather
than logarithmically diverging fluctuations.

Two-letter substitution rules. As stated above, each two-letter substitution chain can be
generated by a substitution rule of the form (3.2). For any marginal substitution rule, we
can assume that the second-largest eigenvalue of the substitution matrix isλ2 = +1. If
necessary, this can be achieved by going to%2. As a consequence,y[0] in equation (3.17)
is eigenvector to the eigenvalueλ2 = 1 of Mt

%, and as above the fields are already at their
fixed points.

In this case, the entries of the transformation matricesM± are polynomials of a single
parameterr that determines the critical couplings. The crucial point now is to show that—as
in the case discussed above—the matricesM± have an eigenvalueλ2 = 1 independently of
r and of the detailed form of the substitution rule. This assertion is proved in appendix A.
Then, the Perron–Frobenius eigenvalues ofM± are given as above (3.41), and we obtain
the critical scaling exponent

z(r) = log(P+aa + P+bb − 1)+ log(P−aa + P−bb − 1)

2 log(λPF)
(3.43)

whereλPF is the leading eigenvalue of the substitution matrix. As in the case discussed
above,z(r) is constant (z ≡ 1) only for the special case of a periodic chain (with period
ab). Otherwise,z is a convex function ofr, with a unique minimumz(1) = 1 where the
(reduced) couplings are equal. On the other hand, it is easy to see that the periodic chain
with period ab is the only two-letter substitution chain with bounded letter fluctuations
that can be generated by a substitution rule of the form (3.2) and that hasλ2 = 1 as the
second-largest eigenvalue of the substitution matrix. We thus conclude thatz ≡ 1 if and
only if the fluctuations are bounded, andz > 1 otherwise.

Examples. The period-doubling chain, given by the substitution rule (2.7) withk = 2,
falls into both classes described above. We consider double substitution steps, eliminating
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blocks of the formaba and obtain the scaling exponent

z(r) = log(r1/3+ r−1/3)

log(2)
. (3.44)

This result was reported before in [15]. If the length of the chain is increased by simple
substitution steps, the coefficientsxj in equation (3.26) convergeseparatelyfor an even
and an odd number of steps. Effectively, this can be seen as a renormalization of the
couplings according tor = εa/εb → r−1 in a single renormalization step. Hence we obtain
xodd
j (r) = xeven

j (r−1).
As an example that is not contained in the above classes, consider the three-letter

substitution

% :

a→ abc

b→ ba

c→ ca

(3.45)

with eigenvalues of the substitution matrixλ1,3 = 1±√2 andλ2 = 1. The eigenvector to
eigenvalue 1 of the transposed substitution matrixMt

% is (0, t,−t), and with equation (3.16)
we conclude thath2

a → ε2
a andh2

b,c → εbεc. Evaluating the RT ofΛ± at this fixed point,
we obtain the critical scaling exponent

z = log
(
1+√1+ εc/εb

)+ log
(
1+√1+ εb/εc

)
2 log(1+√2)

. (3.46)

Note that, forεb = εc, the fluctuations of the couplings are indeed bounded, and we obtain
z = 1 as it should be. In our last example, the couplings follow the Thue–Morse sequence
on the sites of the chain, rather than on the bonds as in all cases discussed so far. The
coupling constants for a site-problem are given as a function of the two adjacent bonds—and
thus can take in generaln2 different values (22 = 4 in this case). It can, however, easily
be shown that this can be reformulated as a bond-problem with a substitution chain on an
n2-letter alphabet [21, 4, 25]. In this case, the resulting four-letter substitution rule is

% :

a→ acdb

b→ bcdb

c→ cbac

d → dbac.

(3.47)

The asymptotic letter frequencies arepa = pd = 1
6 and pb = pc = 1

3; and so we have
εaεdε

2
bε

2
c = 1 (for h = 1) as the criticality condition (2.5). A possible parametrization is

εa = q2, εd = r2, εb = s, andεc = (qrs)−1. The eigenvalues of the substitution matrix are
4, 1, 1, and 0, we thus expect marginal fluctuations, whereas the Thue–Morse bond problem
has bounded fluctuations. Following the above steps, we obtain a scaling exponent

z = log[(qr)1/4+ (qr)−1/4]

log(2)
. (3.48)

Note that forεa = εd , εb = εc we obtain another coding of the period-doubling chain, while
the special caseεa = εb, εc = εd leads us back to the Thue–Morse bond problem with
bounded fluctuations (withq = r−1, and thusz = 1).



Aperiodic Ising quantum chains 7327

3.3. Relevant fluctuations

For |λ2| > 1, fluctuations diverge with a power law. As a consequence, the vectory[k]

finally scales with|λ2| under the RT. Since the matrix elements ofM± are proportional to
exp(yi), at least a part of them eventually diverge like exp(c|λ2|) (note that the components
of y have different sign because of equation (3.18)). Estimating the product of the Perron–
Frobenius eigenvaluesµ± by the product of the corresponding traces, we obtain

3̃2 ∼ µ̃+µ̃− ∼ 32|λ2| (3.49)

and thus

3 ∼ exp(−cNβ) (3.50)

where thewandering exponentβ is defined in equation (2.9).

Two-letter substitutions. Let us discuss this in more detail for the case of two-letter
substitutions. We takeλ2 > 1 with corresponding eigenvectorv of Mt

% and parametrize the
critical couplings as

h2
a,b

ε2
a,b

= rva,b . (3.51)

Sinceva andvb have different sign, either one of these two is bigger than one for a fixed
value r 6= 1, and without loss of generality we assumerva > 1. Note that we have the
following relation

|wa |∏
`=1

h2
w`a

ε2
w`a

= r(λ2−1)va . (3.52)

We now show thatP±aa > exp[(λ2 − 1)va logr]. From equation (3.21), this is immediately
clear forP−aa, but it also holds forP+aa. To see this, consider the products of subsequent
couplings of the wordwa. The product of the entire word is given by equation (3.52). If
the last letter ofwa is ana, this entersP+aa and we are finished. On the other hand, if the
last letter is ab, consider the product of all couplings but the lasth2

b/ε
2
b, which is even

larger. Iterating this argument, we finally arrive at a lettera which proves our estimate of
P+aa. Using the standard eigenvalue formula, we obtain the scaling ofµ± under the RT, and
thereby

3 ∼ exp(−c| logr|Nβ). (3.53)

Here, c is some constant that may depend on the sign of log(r), but apart from that, is
independent ofr andN . This scaling form was also predicted in [18].

4. Scaling behaviour and critical properties

In this section, we give a short summary of the results of our renormalization treatment and
discuss their consequences for the critical properties of the IQC.
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4.1. Results: bounded fluctuations

Here, the behaviour of the low-energy part of the spectrum at criticality is essentially the
same as for the uniform chain. The correlation length critical exponents stays at its Onsager
value z = ν‖ = ν⊥ = 1. For periodic chains (or periodic variations of the interactions
along the layers of the two-dimensional statistical system), the results from renormalization
show that the smallest fermion frequencies are only altered by a common factorv (fermion
velocity), thus also conformal properties persist and the whole model is described by the
central chargec = 1

2 conformal field theory of a massless free Majorana fermion:

3j ∼ xj πv
N

(4.1)

with a fermion velocityv given by (3.33). The scaling dimensionsxj are odd integers
for periodic boundary conditions (mixed-sector Hamiltonian) and odd half-integers for free
boundaries [8]. Numerical results [12] confirm this conformal behaviour even for non-
periodic chains with bounded fluctuations.

4.2. Results: logarithmically diverging fluctuations

For the critical scaling, we can make the followingansatz:

3j =
(
j

N

)z(r)
Fr(j,N). (4.2)

The index r here denotes the dependence on the position on the critical surface. The
predicted scaling behaviour [18] is confirmed analytically for all marginal two-letter
substitution chains and some infinite classes ofn-letter substitution chains.jzFr(j,N)
converges to the scaling coefficientsxj if we increase the length of the chainN by (multiple)
substitution steps, in other wordsFr(j, logN) is asymptotically periodic forN � 0 with
period logλPF, whereλPF is the scaling factor of the system size. Equation (3.43) implies
1 6 z < ∞, and z = 1 is only obtained in the limit of the uniform chain where the
fluctuations actually vanish. We further note that, in the explicitly solved cases,z is invariant
under inversion of all couplings. Thus this is a symmetry of the lower part of the critical
spectrum, while it is easy to see that it is not a symmetry of the entire finite-size spectrum.
As a consequence,z quadratically approaches the isotropic valuez0 = 1 for small deviations
of the couplings from the uniform strengthεα = 1, as was also predicted by Luck [18].

In the terminology of the two-dimensional classical Ising model, we haveν‖ = z > 1
for any marginal disorder within layers of couplings. Since the correlation length critical
exponent perpendicular to the layers remainsν⊥ = 1, marginal fluctuations introduce a
relevant anisotropy of the model, as was noticed in [6]. Due to anisotropic hyperscaling, a
negativespecific-heat exponent

α = 2− ν‖ − ν⊥ = 1− z (4.3)

is expected.
Within the renormalization approach, the length of the chainN is increased by (multiple)

substitution steps. Thus, it is not cleara priori what happens to the scaling dimensions
when we increaseN arbitrarily. Indeed, numerical studies (for free boundary conditions)
show that, if we increaseN by arbitrary amounts, whilez converges,Fr(j,N) stays finite
but will not tend to a unique limit. This is in contrast to the bounded fluctuation case. In
more detail, the following properties ofFr(j,N) have been observed in all examples (of
two-letter substitution chains) studied.
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• Given the couplings,Fr(j,N) appears to be bounded for allN andj .
• ForN > j � 0, the effect ofj on Fr is a mere shift:Fr(j,N) ∼ F(log(N/j)).
• As a consequence of the RT,N � j , Fr(j, logN) is asymptotically periodic.
• The amplitude ofFr vanishes in the limit of the uniform chain,r → 1, asFr

approaches continuously the constant valueπ .
These points can immediately be translated into properties of the integrated density of

states (IDOS), the inverse of which is given by

σ−1(ρ) = ρzFr(− logρ) 0< ρ 6 1. (4.4)

While the first two points imply the convergence of this quantity, the third point above
implies the lower part of the IDOS to be self-similar with a discrete scaling symmetry

mσ(ω) = σ(mzω) = σ(ω/v) (4.5)

where logm is the asymptotic period ofFr . Note that in general not the spectrum (the
lowest fermion frequencies), but only the IDOS displays this scaling behaviour forN � 0.

This scaling property has consequences for the possible gap structure of the critical
spectrum, where the results of the renormalization approach at least lead to necessary
conditions for gap-labelling theorems. But since within this class more spectral properties
can be found analytically using trace maps, we postpone the discussion to a forthcoming
publication.

4.3. Results: relevant fluctuations

In substitution sequences with strong fluctuations, as in our third example, the binary non-
Pisot sequence (k = 3 in equation (2.7)), their divergence is described [18] by the wandering
exponentβ (2.9) which determines the exponential closing of the spectral gaps as

3j ∼ (A(r)+ B(r)N−αj (r)) exp

(
−Fr(j,N)1(r)

(
N

j

)β)
. (4.6)

Here,1(r) is the second moment of the distribution of coupling constants along the chain
[18] which for the binary non-Pisot sequence is given by

1(r) =
√

2
√

13− 7| log(r)| ≈ 0.459| log(r)| (4.7)

and compatibility with the uniform case requiresA(1) = 0 andαj (1) = 1.
From the results of the renormalization approach,Fr(j, logN) should be asymptotically

periodic forN � j . This is confirmed by numerical investigations. Indeed, the latter
suggest the very same properties as given above in the case of marginal fluctuations. In
particular, we observeFr(j,N) = Fr(log(N/j)) for j � 0.

Again, this means that the integrated spectral density converges in the thermodynamic
limit and its lower part shows the following scaling property at the critical point:

σ(ω(m
−β )) = mσ(ω) ω � 1. (4.8)

5. Concluding remarks

Using a renormalization approach, we obtained analytic results for the critical behaviour of a
class of Ising models intermediate between uniformly (or periodically) ordered and randomly
disordered systems. The systems under consideration are ferromagnetic Ising quantum
chains whose interaction constants are modulated according to substitution sequences.
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Luck’s criterion [18] for the relevance of aperiodic disorder on the critical behaviour is
fully confirmed for these systems, providing increasing evidence that thefluctuation of
the interactionsis the basic concept that demarcates the Onsager universality class from
models with weaker critical singularities. For two-letter substitution rules, this analysis was
carried out in detail, showing how the renormalization flow is determined by the nature of
the fluctuations. An exact renormalization formalism for the most general case ofn-letter
substitution rules was also presented and applied to examples.

A number of quantitative results have been displayed, mainly for the correlation length
critical exponent (respectively the scaling exponentz of the mass gap), confirming and
refining Luck’s predictions for bounded, marginal, and relevant fluctuations of the coupling
constants. In particular, an exact formula has been obtained for the scaling exponent of
arbitrary two-letter substitution chains, containing previous results as special cases. In this
light, the case of two-letter substitution rules now appears to be rather well understood.

What remains to be achieved in then-letter case is a thorough discrimination between
quantum (substitution) chains with bounded and with marginal fluctuations of the couplings.
This is connected with the problem of determining all substitution rules with second-largest
eigenvalue of the substitution matrix on the unit circle, which nevertheless result in a chain
with bounded rather than marginal fluctuations. Also, the investigation of ordered cases
that do not stem from a substitution rule might add some insight as they can possess a
higher degree of complexity. Unfortunately, renormalization techniques will probably be
unsuitable here.

Of primary interest are, of course, extensions to higher dimensions. A natural first
step is to study two-dimensional statistical systems with two-dimensional rather than one-
dimensional variations of the interactions. As can be seen from some special cases [3],
analytic results are possible in principle, but they are not generic and solvable cases might
actually be misleading. Further analysis is necessary, and some results can be expected
from numerical approaches, especially since structures generated by substitution rules are
well-suited for (numerical) renormalization. Initial results in this direction have recently
been obtained [23] and soon will be extended.
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Appendix A. Solution of the eigenvalue problem for two-letter substitutions

We consider two-letter chains generated by substitution rules

% :
a→ awa
b→ bwb

(A.1)

which haveλ2 = 1 as the second-largest eigenvalue of the corresponding substitution matrix.
As a consequence, one finds the constraints

pa = #a(wa)

|wa| =
#a(wb)

|wb| pb = #b(wa)

|wa| =
#b(wb)

|wb| (A.2)

on the wordswa andwb and the letter frequenciespa,b in the limit word, where #α(wβ)
denotes the number of lettersα contained in the wordwβ . We parametrize the criticality
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condition (2.5)εpaa ε
pb
b = 1 (settingh = 1) for the corresponding Ising chain by

εa = r−l/2 εb = rk/2 (A.3)

with coprime integersk and l, such thatlpa = kpb. Thenk + l divides |wa| and |wb|.
The scaling exponent of the critical spectrum is a simple expression of the leading

eigenvalues of two matrices

M± =
(
P±aa P±ba
P±ab P±bb

)
(A.4)

where the entriesP±xy are defined in equations (3.21) and (3.25). They are polynomials in
r and r−1. In what follows, we prove thatM± have an eigenvalueλ2 = 1, independently
of the value ofr and of the detailed form of the substitution rule%. Since we have
M+(r) = M−(r−1), it suffices to concentrate onM+.

We define two polynomialsP a,b corresponding to the wordswa andwb by

P a(r, r−1, u) := (P+aa − 1)+ uP+ab P b(r, r−1, u) := P+ba + u(P+bb − 1). (A.5)

Taking the frequenciespa,b of the letters as given, the possible wordswa and wb are
subject to the constraints (A.2). We define anelementary polynomialP e(r, r−1, u) to be
the polynomialP a,b corresponding to a wordwe of minimal length fulfilling this condition.
Sincek and l are coprime, eachwe consists ofk a’s and l b’s and leads to one of

(
k+l
l

)
different possible elementary polynomials.

In the following letw bewa or wb. We now introduce a graphical representation of the
wordw and the accompanying polynomials. For a givenw, we iteratively construct a step
function gw : [0; |w|] → Z as follows:

gw(0) = 0

gw(x) =
{
gw(k − 1)+ l if wk = a
gw(k − 1)− k if wk = b

}
for k − 1< x 6 k.

(A.6)

Note that the criticality conditions implygw(|w|) = 0. An example for the casek = 2,
l = 3 is shown in figure A1.

Forw = wa (w = wb), P+aa−1 (respectivelyP+ba) is given by the ‘sum over theupward
steps’ ofgw (proceeding in the positivex-direction), whileP+ab (respectivelyP+bb − 1) is

|w| = 10 x1

1

A B

g  (x)
w

Figure A1. Step functiongw(x) (A.6) of the wordw = abbaabbabb. The endpoints of an
elementary polynomial that can be separated are marked by ‘A’ and ‘B’.
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given by the ‘sum over thedownward steps’, each step contributing a termrgw(k). In our
example (forw = wa), P+aa − 1= r3+ r2+ r5+ r4 andP+ab = r + r−1+ r3+ r + r2+ 1.

In a first step, we now show thatP a,b can be expressed as sums over elementary
polynomialsP e.

Lemma. For an arbitrary wordw fulfilling the criticality condition for givenpa,b, there
are integersai and elementary polynomialsP ei , such that

P a,b(r, r−1, u) =
∑
i

raiP ei (r, r
−1, u). (A.7)

Proof. Consider the substringssj of w of lengthk+ l starting with the letterwj . For each
sj containing more thank a’s, there has to be ansi with less thank a’s, because of the
criticality condition forw. Since the number ofa’s contained in successive substringssj
andsj+1 differs at most by one, there is at least one substring consisting ofk a’s and l b’s.
In the graphical representation, this appears as a restriction ofgw to an interval of length
k+ l with the endpoints of the graph taking the same value. The corresponding term within
P a,b is obviously some elementary polynomial times a power ofr. We may now eliminate
this substring fromw (cut out the interval in the graphical picture) and start the argument
again.

We proceed by showing that the elementary polynomials differ only in a (polynomial)
factor that is independent ofu. �
Proposition. Given k and l, there are polynomialsPk(r, r−1) andPl(r, r−1) such that for
every elementary polynomialP e

P e(r, r−1, u) = Qe(r, r−1)[Pk(r, r
−1)+ uPl(r, r−1)] (A.8)

whereQe(r, r−1) is a polynomial that does not depend onu.

Proof. An elementary polynomialP e takes the following general form

P e = rl−c1k + r2l−c2k + · · · + rkl−ckk + u
( c1∑
j=1

r−jk +
c2∑

j=c1

rl−jk + · · · +
l∑

j=ck
rkl−jk

)
(A.9)

where 06 c1 6 c2 6 · · · 6 ck 6 l are integers. Defining

Pk :=
k−1∑
j=0

rj = 1− rk
1− r Pl :=

l∑
j=1

r−j = r−l − 1

1− r (A.10)

the proof then follows by direct calculation. We remark that with this choice ofPk andPl ,
Qe can also be shown to be a polynomial inr andr−1.

Now, we are in the position to complete our argument. From equations (A.5), (A.7)
and (A.8), we conclude that

Paa − 1

Pab
= Pk

Pl
= Pba

Pbb − 1
. (A.11)

Thus it follows that det(M+ − I) = 0, and henceλ2 = 1 is an eigenvalue ofM+ for an
arbitrary value ofr. The leading eigenvalues ofM± are given in equation (3.41). �

Appendix B. Renormalization formalism for general n-letter substitution rules

In the above discussion, the coupling constants were chosen according to a substitution rule
of the special form (3.2). While any (infinite) substitution chain with two letters can be
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generated that way, this is no longer the case for three or more different letters (respectively
couplings). In this appendix, we present a generalized version of the renormalization
formalism to deal with the general case. Consider a substitution rule of the form

% : ai → wi = wi1aiwi2. (B.1)

The main problem in the general case is to maintain the recursive structure of the
renormalization procedure within the elimination process. By fixing the first letter of the
substitutes in equation (3.2), the appropriate couplings of the renormalized chain were given.
This is no longer possible here; however, we can proceed as follows.
• Fix any letterai within the wordwi = %(ai), thus defining two wordswi1 andwi2

as shown in equation (B.1). Note that the letterai appears in the wordwi (at least for a
suitably chosen power%k of the substitution rule) for primitive substitutions.
• Redefine the substitution rule as a function onpairs of letters in the following way

%  %̄ : ai(aj )→ aiwi2wj1(aj ). (B.2)

Obviously, (B.2) leads to the same limit chain as (B.1). The substitution matrix of%̄

has a dimension of at mostn2 (pairs aiaj that do not appear in the original chain need
not be included in%̄). Actually, M%̄ is just the substitution matrix of the corresponding
site-problem, where the type of site follows the sequence, and the bond (respectively the
interaction along it) is a function of its two endpoints [21, 25]. Note, however, that the
couplings here are still attached to the bonds.
• In the renormalization formalism, now defineS-matrices, fields and asymmetry-

parameters corresponding to pairs of letters

Sai |aj =
(
ε−1
ai
κ+aiaj3 −ε−1

ai
haiaj

−ε−1
aj
haiaj ε−1

aj
κ−aiaj3

)
. (B.3)

Renormalization again means inverting the substitution process by integrating out all degrees
of freedom attached to the wordswi1 andwi2. We obtain renormalizedS-matrices through

S̃ai |aj = Sai |w1
i2
∗ Sw1

i2|w2
i2
∗ · · · ∗ S

w
|wi2|
i2 |w1

j1
∗ · · · ∗ S

w
|wj1|
j1 |aj . (B.4)

• The RT (and their linear orders in3) for the (at most) 3n2 parameters are then
obtained analogous to section 3.

For a classification of the critical behaviour based on the fluctuations we need to know
about the spectrumσ%̄ of M%̄ in dependence of the spectrumσ% of M%. For an appropriate
power of %, it is indeed possible to show thatσ%̄ containsσ% and that all additional
eigenvalues are either 1 or 0. We only sketch the proof here. Without restriction of
the general case, we can assume that the first and the last letters of all wordswi remain
fixed under the substitution; that isw1

i = [%(wi)]1 for the first letter, and equivalently for
the last letter. This is always fulfilled by a finite power%r of the substitution rule. We
assume then wordswi to havek different first letters andj different last letters. Taking a
look at the associated pair substitution matrixM%̄, it is easy to show that

tr(M%̄) = tr(M%)+ n+ kj − k − j. (B.5)

Since we always havē%m = %̄m and the numbersk andj remain fixed because of the above
assumption, the traces of(M%̄)

m and (M%)
m differ only by the constantn+ kj − k − j for

arbitrarym. We conclude thatσ%̄ containsσ% and the all additional eigenvalues are fixed
points under any power, thus 1 or 0.

We will, however, not give a detailed discussion of the general case here, but rather
illustrate the method by applying it to a special example. Consider the substitution rule of



7334 J Hermisson et al

the ‘circle sequence’. This example of a quasiperiodic chain (in the sense that it has a pure
point Fourier spectrum) has been studied numerically in [18]

a→ cac → abcaccacabcac

% : b→ accac→ cacabcacabcaccacabcac (B.6)

c→ abcac→ cacaccacaabcaccacabcac

with %2 being of the form (B.2). The eigenvalues ofM%2 are τ 6, 1, and τ−6, where
τ = (1+√5)/2 is the golden mean—we thus expect marginal fluctuations. The asymptotic
frequencies of the letters arepa = 2− τ , pb = τ − 3

2, andpc = 1
2, respectively. We

chooseεa = rs−τ , εb = rs, andεc = r−1s as the parametrization of the critical couplings
ε
pa
a ε

pb
b ε

pc
c = 1. Since only the five pairsab, ac, bc, ca, and cc appear in the chain, the

dimension of the pair transfer matrixM%̄2 is just five. The spectrumσ%̄2 consists of the
spectrumσ%2 and of two additional eigenvalues 1. Identifying pairs of couplings with the
first one, we clearly havepab + pac = pa, pbc = pb, andpca + pcc = pc. Thus the vector
y of the logarithms of the reduced couplings,yxy = 2 log(hxy/εx), is still perpendicular
to the Perron–Frobenius eigenvector ofM%̄ and converges in the renormalization limit to
a linear combination of two eigenvectorsv, corresponding to an eigenvalue 1 ofMt

%̄:
y→ logrv + logsv. While both parameters,r ands, enter the transformation matrices
M± of 3±, s can actually be eliminated by a similarity transformation. Such behaviour is
always to be expected if a parameter is connected to an eigenvector (likev in this case)
that corresponds to anadditional eigenvalue 1 ofMt

%̄2, not contained inσ%2. The Perron–
Frobenius eigenvalues ofM± can be determined explicitly, and we obtain for the scaling
exponent

z =
log

(
5+ 2(r + r−1)+ 5+ 2

√
(r + r−1+ 2)2+ (r + r−1+ 2)

)
6 log(τ )

. (B.7)

Finally, we would like to show an example of a three-letter substitution rule

% :
a→ bca

b→ bcb

c→ ca

(B.8)

with bounded fluctuations, which nevertheless hasλ2 = 1 as the second-largest eigenvalue
of the substitution matrix. This is the site substitution that corresponds to the bond-problem
given by%s : a→ aba; b→ ba. Fluctuations are indeed bounded here, since we just obtain
the Fibonacci chain by identifyinga andb, but also by identifyinga andc. Calculating the
scaling exponent by the above method, we obtainz = 1, as was to be expected.
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